Computational Methods for Deep Learning

CHF 119.05
Auf Lager
SKU
KCI5TAA5B4C
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

The first edition of this textbook was published in 2021. Over the past two years, we have invested in enhancing all aspects of deep learning methods to ensure the book is comprehensive and impeccable. Taking into account feedback from our readers and audience, the author has diligently updated this book.

The second edition of this textbook presents control theory, transformer models, and graph neural networks (GNN) in deep learning. We have incorporated the latest algorithmic advances and large-scale deep learning models, such as GPTs, to align with the current research trends. Through the second edition, this book showcases how computational methods in deep learning serve as a dynamic driving force in this era of artificial intelligence (AI).

This book is intended for research students, engineers, as well as computer scientists with interest in computational methods in deep learning. Furthermore, it is also well-suited for researchers exploring topics such as machine intelligence, robotic control, and related areas.

Explores advanced topics in deep learning encompassing transformer models, control theory, and graph neural networks Presents detailed mathematical descriptions and algorithms for generative pre-trained models, such as GPTs Serves as a valuable reference book for postgraduate and PhD students

Autorentext
Wei Qi Yan is Director of Institute of Robotics & Vision (IoRV) at Auckland University of Technology (AUT) in New Zealand (NZ). Dr. Yan's research interests encompass deep learning, intelligent surveillance, computer vision, and multimedia computing. His expertise lies in computational mathematics, applied mathematics, computer science, and computer engineering. He holds the positions of Chief Technology Officer (CTO) of Screen 2 Script Limited (NZ) and Director and Chief Scientist of the Joint Laboratory between AUT and Shandong Academy of Sciences China (NZ). Dr. Yan also serves as Chair of ACM Multimedia Chapter of New Zealand and is Member of the ACM. Additionally, he is Senior Member of the IEEE and TC Member of the IEEE. In 2022, Dr. Yan was recognized as one of the world's top 2% cited scientists by Stanford University.


Klappentext

  1. Introduction.- 2. Deep Learning Platforms.- 3. CNN and RNN.- 4. Autoencoder and GAN.- 5. Reinforcement Learning.- 6. CapsNet and Manifold Learning.- 7. Boltzmann Machines.- 8. Transfer Learning and Ensemble Learning.

    Inhalt

  1. Introduction.- 2. Deep Learning Platforms.- 3. CNN and RNN.- 4. Autoencoder and GAN.- 5. Reinforcement Learning.- 6. CapsNet and Manifold Learning.- 7. Boltzmann Machines.- 8. Transfer Learning and Ensemble Learning.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819948222
    • Genre Information Technology
    • Auflage 2nd edition 2023
    • Lesemotiv Verstehen
    • Anzahl Seiten 244
    • Größe H241mm x B160mm x T19mm
    • Jahr 2023
    • EAN 9789819948222
    • Format Fester Einband
    • ISBN 9819948223
    • Veröffentlichung 16.09.2023
    • Titel Computational Methods for Deep Learning
    • Autor Wei Qi Yan
    • Untertitel Theory, Algorithms, and Implementations
    • Gewicht 535g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470