Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Computational Pipeline for Human Transcriptome quantification
Details
The main theme of this thesis research is concerned with developing a computational pipeline for processing Next-generation RNA sequencing (RNA-seq) data. RNA-seq experiments generate tens of millions of short reads for each DNA/RNA sample. The alignment of a large volume of short reads to a reference genome is a key step in NGS data analysis. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing useful information. In order to assist biomedical researchers to conveniently access essential information from NGS data files in SAM/BAM format, we have developed a Graphical User Interface (GUI) software tool named SAMMate to pipeline human transcriptome quantification. SAMMate allows researchers to easily process NGS data files in SAM/BAM format and is compatible with both single-end and paired-end sequencing technologies. It also allows researchers to accurately calculate gene expression abundance scores.
Autorentext
Guorong Xu was born in Hunan province, China on October 3rd 1977. He received his master degree in the department of Computer Science in 2011. And then he continue his further study in Bioinformatics area.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783847340539
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T6mm
- Jahr 2012
- EAN 9783847340539
- Format Kartonierter Einband
- ISBN 3847340530
- Veröffentlichung 06.01.2012
- Titel Computational Pipeline for Human Transcriptome quantification
- Autor Guorong Xu
- Untertitel Computational Pipeline for Human Transcriptome Quantification using RNA-seq data
- Gewicht 143g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 84
- Genre Informatik