Computationally Efficient Model Predictive Control Algorithms

CHF 135.15
Auf Lager
SKU
CSGVV34SITF
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

This book discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. Covers feed forward perceptron neural models, neural Hammerstein models and more with high accuracy and computational efficiency.

This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include:

· A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.

· Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.

· The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).

· The MPC algorithms with neural approximation with no on-line linearization.

· The MPC algorithms with guaranteed stability and robustness.

· Cooperation between the MPC algorithms and set-point optimization.

Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.


Presents recent research in Computationally Efficient Model Predictive Control Algorithms Focuses on a Neural Network Approach for Model Predictive Control Written by an expert in the field

Inhalt
MPC Algorithms.- MPC Algorithms Based on Double-Layer PerceptronNeural Models: the Prototypes.- MPC Algorithms Based on Neural Hammerstein andWiener Models.- MPC Algorithms Based on Neural State-Space Models.- MPC Algorithms Based on Neural Multi-Models.- MPC Algorithms with Neural Approximation.- Stability and Robustness of MPC Algorithms.- Cooperation Between MPC Algorithms and Set-PointOptimisation Algorithms.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319350219
    • Genre Technology Encyclopedias
    • Auflage Softcover reprint of the original 1st edition 2014
    • Lesemotiv Verstehen
    • Anzahl Seiten 340
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T19mm
    • Jahr 2016
    • EAN 9783319350219
    • Format Kartonierter Einband
    • ISBN 3319350218
    • Veröffentlichung 27.08.2016
    • Titel Computationally Efficient Model Predictive Control Algorithms
    • Autor Maciej Awry Czuk
    • Untertitel A Neural Network Approach
    • Gewicht 517g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470