Computer Aided Detection of IDC Using Deep Neural Architectures

CHF 76.25
Auf Lager
SKU
10JQ9TMU6OF
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

Breast cancer is the most frequent kind of cancer among females. Survival rates and prognoses for breast cancer vary greatly based on the stage at which it is detected. As a result, treatment is more effective if it is diagnosed early. Invasive ductal carcinoma(IDC) tissue areas in whole slide images (WSI) of breast cancer: an approach for automated diagnosis and visual analysis (BCa). Deep learning methods involve computational models of the learning process and are learn-from-data methods. This method is analogous to how the human brain works, in which the most representative and valuable traits are interpreted at different levels or layers, resulting in a hierarchical learnt representation. In various domains, including as speech understanding and object identification, these methods have been demonstrated to outperform traditional approaches to the most difficult issues. The procedure proposed in this thesis may open up a new direction in achieving a breast cancer prediction technique. Fundamentally, two types of ductal carcinoma are found in women and tumor of the ductal carcinoma. Cancer of the internal organs is also known as DCIS or Intra ductal Carcinoma.

Autorentext

Dr.Naresh Tangudu working as assistant professor in Aditya Institute of Technology and Management, Tekkali in IT department. His interests include software engineering, machine learning, Deep learning, IoT and Security.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786205518687
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2022
    • EAN 9786205518687
    • Format Kartonierter Einband
    • ISBN 6205518686
    • Veröffentlichung 30.11.2022
    • Titel Computer Aided Detection of IDC Using Deep Neural Architectures
    • Autor Naresh Tangudu , Orsu Nagaraju
    • Untertitel Computer Aided Detection of Ductal Carcinoma Using Deep Neural Architectures
    • Gewicht 191g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 116
    • Genre Sozialwissenschaften, Recht & Wirtschaft

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470