Concrete 2.0: Harnessing Machine Learning For Strength Prediction

CHF 76.35
Auf Lager
SKU
LAT2H0LIUNF
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This study predicts the capability of recycled plastic granules as a sustainable opportunity to conventional coarse mixture in concrete by using neural network. The goal is to increase a study gadget learning model capable of accurately predicting the compressive strength of concrete containing numerous chances of recycled plastic aggregate. This learning is helpful to overcome the required time period for knowing concrete strength by traditional method. This research contributes imparting a reliable tool for predicting the compressive strength of concrete with plastic combination. It optimize the combination layout for numerous programs, and inspect the effect of various kinds of plastic waste on concrete.

Autorentext
Mr.S.VENKATESWARAN currently working as an Assistant Professor in the Department of Civil Engineering at Agni College of Technology. Mr. Ragul S, II Year, M.E. Structural Engineering student at Agni College of Technology.Mr.N.VIMALRAJ is Currently working as Assistant Professor in the Department of Civil Engineering at Agni College of Technology.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786208418939
    • Genre Business, Finance & Law
    • Sprache Englisch
    • Anzahl Seiten 96
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 161g
    • Größe H220mm x B150mm x T6mm
    • Jahr 2024
    • EAN 9786208418939
    • Format Kartonierter Einband
    • ISBN 6208418933
    • Veröffentlichung 27.12.2024
    • Titel Concrete 2.0: Harnessing Machine Learning For Strength Prediction
    • Autor Venkateswaran S , Ragul S , Vimal Raj N
    • Untertitel Machine Learning Algorithm For Strength Prediction of Concrete

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470