Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Constant Curvature
CHF 49.50
Auf Lager
SKU
IQEMDP8IN2J
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, constant curvature in differential geometry is a concept most commonly applied to surfaces. For those the scalar curvature is a single number determining the local geometry, and its constancy has the obvious meaning that it is the same at all points. The circle has constant curvature, also, in a natural (but different) sense. The standard surface geometries of constant curvature are elliptic geometry (or spherical geometry) which has positive curvature, Euclidean geometry which has zero curvature, and hyperbolic geometry (pseudosphere geometry) which has negative curvature. Since Riemann surfaces can be taken to have constant curvature, there is a large supply of other examples, for negative curvature.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131236839
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131236839
- Format Fachbuch
- Titel Constant Curvature
- Herausgeber Betascript Publishing
- Anzahl Seiten 108
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung