Construction of Advanced Machine Learning Models for Air Traffic

CHF 85.50
Auf Lager
SKU
K5IGGAQ26N4
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book explores the application of various time series and machine learning techniques to model and forecast domestic airline traffic. It provides a comprehensive study of traditional and modern predictive approaches. It presents an extensive literature review on airline traffic modeling, covering traditional time series methods(Holt's Winter, ARIMA, SARIMA) alongside advanced machine learning techniques(FFNN, MLP, LSTM). A comparative analysis of these methods, highlighting their strengths and limitations, is also included. Further, it explores the Bayesian estimation of SARIMA model parameters. The estimated parameters and predictions are compared with the traditional maximum likelihood approach. It extends the research by introducing mixture models, hybrid approaches, and simple averaging techniques to enhance predictive accuracy. The effectiveness of these models is evaluated through comparative analysis.

Autorentext
Dr. Mounika Panjala, an M.Sc. (Applied Statistics) and Ph.D. (Statistics) graduate from Osmania University, is a faculty member at the University of Hyderabad, Hyderabad, Telangana, India. She has excelled academically, qualifying UGC-NET, GATE (Statistics), and TSSET, with research focused on "Data Modelling through Machine Learning".

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786208436483
    • Genre Maths
    • Anzahl Seiten 144
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T10mm
    • Jahr 2025
    • EAN 9786208436483
    • Format Kartonierter Einband
    • ISBN 6208436486
    • Veröffentlichung 18.03.2025
    • Titel Construction of Advanced Machine Learning Models for Air Traffic
    • Autor Panjala Mounika , Nallani Chakravarthula Bhatracharyulu
    • Untertitel DE
    • Gewicht 233g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470