Content Based Image Retrieval

CHF 77.80
Auf Lager
SKU
Q6KB0I0BPGL
Stock 1 Verfügbar
Geliefert zwischen Di., 11.11.2025 und Mi., 12.11.2025

Details

The field of content-based image retrieval (CBIR) focuses on the analysis of image content and the development of tools to represent the visual content in a way that can be efficiently searched and compared. The main aim of this work is to improve the retrieval performance of medical images retrieval methodology that is based on various types of visual features (such as color, texture and shape). The improvement is based on a new multi-level retrieval scheme that deals with different types of medical databases. Within the two phases of the system (i.e., enrollment and retrieval) some new features are introduced. Also, to reach high precision and recall levels, various methods are combined; such as the similarity measures based on Euclidian distance and the artificial neural network trained using back propagation algorithm.

Autorentext

B.Sc. in Computer Science, University of Mosul, Iraq, M.Sc. and Ph.D. in Computer Science, University of Sulaimani, Iraq. Research interests:Artificial Neural networks, CBIR, Database, Fractals, FPGA, Image Processing, Wireless Communication.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659452871
    • Sprache Englisch
    • Größe H220mm x B150mm x T8mm
    • Jahr 2013
    • EAN 9783659452871
    • Format Kartonierter Einband
    • ISBN 3659452874
    • Veröffentlichung 05.09.2013
    • Titel Content Based Image Retrieval
    • Autor Esraa Zeki Mohammed , Loay Edwar George
    • Untertitel Concepts and Methods for Efficient Retrieval for Medical Images
    • Gewicht 215g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 132
    • Genre Wirtschaft

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470