Content Based Image Retrieval System for CAD Images

CHF 57.55
Auf Lager
SKU
1160DHC7N2E
Stock 1 Verfügbar
Geliefert zwischen Mi., 12.11.2025 und Do., 13.11.2025

Details

Any image retrieval system that is based on the content (numeric features) and associated information of a CAD image, suffers from a problem that the unit of information is basically a numerical value and hard to interpret in terms of human understanding. Therefore, there is an urgent need to remove this barrier so that the retrieval system works for humans and with humans. This book has been written to showcase an implementation wherein access to full information relevant to a CAD image is provided, which helps the user in performing some useful technical task. The desired outcome has been achieved by reducing the semantic gap between the system and the needs of the human informational retrieval, at the same time giving high precision and recall values.

Autorentext

Anaahat Dhindsa received her B.E. in Telecom and IT in 2007 from University Institute of Engineering & Technology,PU,Chandigarh,India and M.E. in Electronics and Communication Engineering in 2012 from PU,Chandigarh,India. She has done her research work under the guidance of Mr Sumit Budhiraja, PU,Chandigarh,India.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659462030
    • Genre Elektrotechnik
    • Sprache Englisch
    • Anzahl Seiten 88
    • Größe H220mm x B150mm x T6mm
    • Jahr 2013
    • EAN 9783659462030
    • Format Kartonierter Einband
    • ISBN 3659462039
    • Veröffentlichung 29.09.2013
    • Titel Content Based Image Retrieval System for CAD Images
    • Autor Anaahat Dhindsa , Sumit Budhiraja
    • Untertitel Basics, Concepts and Implementation
    • Gewicht 149g
    • Herausgeber LAP LAMBERT Academic Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470