Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Copula-Based Markov Models for Time Series
Details
This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers.
As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.
Serves as introductory textbook on the analysis of time series data for students majoring in statistics and related fields Includes numerous real-world data examples as well as R codes for implementation Discusses times series data, from basic theories to real-world applications
Autorentext
Li-Hsien Sun, National Central University
Xin-Wei Huang, National Chiao Tung University
Mohammed S. Alqawba, Qassim University
Jong-Min Kim, University of Minnesota at Morris
Takeshi Emura, Chang Gung University
Inhalt
Chapter 1 Overview of the book with data examples. -Chapter 2 Copula and Markov models.- Chapter 3 Estimation, model diagnosis, and process control under the normal model.- Chapter 4 Estimation under the normal mixture model for financial time series data.- Chapter 5 Bayesian estimation under the t-distribution for financial time series data.- Chapter 6 Control charts of mean and variance using copula Markov SPC and conditional distribution by copula.- Chapter 7 Copula Markov models for count series with excess zeros.
<p
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811549977
- Sprache Englisch
- Auflage 1st edition 2020
- Größe H235mm x B155mm x T9mm
- Jahr 2020
- EAN 9789811549977
- Format Kartonierter Einband
- ISBN 9811549974
- Veröffentlichung 02.07.2020
- Titel Copula-Based Markov Models for Time Series
- Autor Li-Hsien Sun , Xin-Wei Huang , Takeshi Emura , Jong-Min Kim , Mohammed S. Alqawba
- Untertitel Parametric Inference and Process Control
- Gewicht 236g
- Herausgeber Springer Nature Singapore
- Anzahl Seiten 148
- Lesemotiv Verstehen
- Genre Mathematik