Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Covariant Schrödinger Semigroups on Riemannian Manifolds
Details
Develops basic vector-bundle-valued objects of geometric analysis from scratchGives a detailed proof of the Feynman-Kac fomula with singular potentials on manifolds
Includes previously unpublished results
Develops basic vector-bundle-valued objects of geometric analysis from scratch Gives a detailed proof of the Feynman-Kac fomula with singular potentials on manifolds Includes previously unpublished results
Inhalt
Sobolev spaces on vector bundles.- Smooth heat kernels on vector bundles.- Basis differential operators on Riemannian manifolds.- Some specific results for the minimal heat kernel.- Wiener measure and Brownian motion on Riemannian manifolds.- Contractive Dynkin potentials and Kato potentials.- Foundations of covariant Schrödinger semigroups.- Compactness of resolvents for covariant Schrödinger operators.- L^p properties of covariant Schrödinger semigroups.- Continuity properties of covariant Schrödinger semigroups.- Integral kernels for covariant Schrödinger semigroup.- Essential self-adjointness of covariant Schrödinger semigroups.- Form cores.- Applications. <p
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319886787
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2017
- Größe H235mm x B155mm x T15mm
- Jahr 2019
- EAN 9783319886787
- Format Kartonierter Einband
- ISBN 3319886789
- Veröffentlichung 06.06.2019
- Titel Covariant Schrödinger Semigroups on Riemannian Manifolds
- Autor Batu Güneysu
- Untertitel Operator Theory: Advances and Applications 264
- Gewicht 400g
- Herausgeber Springer International Publishing
- Anzahl Seiten 260
- Lesemotiv Verstehen
- Genre Mathematik