Cyclic Pure Submodules

CHF 61.40
Auf Lager
SKU
K2ITFNDEH2I
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

In abstract algebra, the concept of a module over a ring is a generalization of the notion of vector space, where instead of requiring the scalars to lie in a field, the scalars lie in arbitrary ring.The notion of purity was first introduced in abelian groups. This notion was extended to modules over principal ideal domains (PID). In 1952, Kaplansky introduced the notion of purity for modules over Dedekind domains. He has generalized most of the results in abelian groups to modules over a Dedekind domain. P.M.Cohn was first to define the purity in terms of tensor product for modules over an arbitrary ring and has shown that this notion is equivalent to one introduced for modules over a PID. Later Stenstrom has studied various notions of purity. Warfield Jr.has given projective characterization for purity and has introduced the notion of RD-purity which is same as purity in abelian groups. Hiremath has dualized the notion of purity as copurity and has made detailed investigation of copurity. In this thesis, we have made detailed study of cyclic purity and its dual cocyclic copurity.

Autorentext
Lecturer, Government Pre University College, Mundargi, India. Completed her Ph.D from Karnatak University, Dharwad, under the guidance of Prof.V.A.Hiremath, with University Research Scholarship. She has 3 publications in reputed journals and presented papers in many national and international conferences. This work is her Ph.D thesis.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783848485246
    • Sprache Englisch
    • Auflage Aufl.
    • Größe H220mm x B220mm
    • Jahr 2012
    • EAN 9783848485246
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-8484-8524-6
    • Titel Cyclic Pure Submodules
    • Autor Seema Gramopadhye
    • Untertitel Introduction, Generalization and dualization
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 64
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470