Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Damping
CHF 57.10
Auf Lager
SKU
98RGSLA3040
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
This article is about damped harmonic oscillators. For detailed mathematical description of the harmonic oscillator including forcing and damping, see Harmonic oscillator. For damping in music, see Damping (music). In physics, damping is any effect that tends to reduce the amplitude of oscillations in an oscillatory system, particularly the harmonic oscillator. In mechanics, friction is one such damping effect. For many purposes the frictional force Ff can be modeled as being proportional to the velocity v of the object: Ff = cv, where c is the viscous damping coefficient, given in units of newton-seconds per meter. Generally, damped harmonic oscillators satisfy the second-order differential equation: frac{d^2x}{dt^2} + 2zetaomega0frac{dx}{dt} + omega0^2 x = 0, where 0 is the undamped angular frequency of the oscillator and is a constant called the damping ratio. For a mass on a spring having a spring constant k and a damping coefficient c, 0 = k/m and = c/2m 0.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130299798
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H220mm x B150mm x T9mm
- Jahr 2010
- EAN 9786130299798
- Format Fachbuch
- ISBN 978-613-0-29979-8
- Titel Damping
- Untertitel Physics, Amplitude, Mechanics, Harmonic oscillator, Viscosity, Metre, Ordinary differential equation, Exponential decay, Damping ratio, Damping factor, RLC circuit, Oscillation, Simple harmonic motion
- Gewicht 231g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 144
Bewertungen
Schreiben Sie eine Bewertung