Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Assimilation with the Local Ensemble Transform Kalman Filter
Details
Our work has addressed several issues relating to Ensemble Kalman Filter (EnKF) for assimilating real data, 1) model errors, 2) inconvenience or infeasibility of manually tuning the inflation factor when it is regional and/or variable dependent and 3) erroneously specified observation error statistics. A Local Ensemble Transform Kalman Filter (LETKF) is used as an efficient representative of other EnKF systems. For the model errors issue, we assimilate observations generated from the NCEP/NCAR reanalysis fields into the SPEEDY model. Several methods to handle model errors including model bias and system-noise are investigated. We address the second and third issues by simultaneously estimating both inflation factor and observation error variance on-line. Our research in this book suggests the need to develop a more advanced LETKF with both bias correction and adaptive estimation of inflation within the system.
Autorentext
Hong Li is currently an associate professor in Shanghai Typhoon Institute, China. She received her Ph.D. from University of Maryland (UMD) in 2007. Eugenia Kalnay is a Distinguished University Professor of Atmospheric and Oceanic Science at the UMD in the United States.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639308129
- Genre Geowissenschaften
- Sprache Englisch
- Anzahl Seiten 136
- Herausgeber VDM Verlag Dr. Müller e.K.
- Größe H7mm x B220mm x T150mm
- Jahr 2010
- EAN 9783639308129
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-30812-9
- Titel Data Assimilation with the Local Ensemble Transform Kalman Filter
- Autor Hong Li , Eugenia Kalnay
- Untertitel addressing model errors, observation errors and adaptive inflation
- Gewicht 197g