Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Construction Method for Small Sample Sets
Details
Data Construction Method (DCM) based on the multiset division is proposed. The DCM can not only generate addition data within the domain value of the given sample for revealing the data's patterns, but also creates the membership function from the generated data for further applications. In this way, the DCM is taken to filling up the information gaps caused by small-sample-sets. To demonstrate the effectiveness of DCM, after presenting the DCM's theoretic background, properties, and algorithm, we compared the DCM with several existing approaches in estimating the population mean and improving the supervised neural network learning performance. The results show that the DCM performs better in a comparative manner. To show its applicability, we have applied the membership function derived from the DCM data to the studies of predicting the severe earthquakes in Taiwan and forecasting the psychotic episode of individual schizophrenics. The results have shown that the DCM can provide appropriate references for prediction from both spatial and temporal small data sets.
Autorentext
Hsiao-Fan Wang is the Distinguished Chair Professor of National Tsing Hua University, Taiwan, ROC. She has been awarded the distinguished researcher of NSC in Taiwan and is the editor of several international journals. Her research interests are in MCDM, Fuzzy Set Theory, Rare and Huge Data Analysis and Green Value Chain Management.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 172
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 274g
- Untertitel Theory and Applications
- Autor Hsiao-Fan Wang , Chun-Jung Huang
- Titel Data Construction Method for Small Sample Sets
- Veröffentlichung 30.08.2010
- ISBN 3838398378
- Format Kartonierter Einband
- EAN 9783838398372
- Jahr 2010
- Größe H220mm x B150mm x T11mm
- GTIN 09783838398372