Data Mining: Comparative study of predictive techniques

CHF 51.55
Auf Lager
SKU
C3S7T5GOJKK
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Today, a large number of companies are becoming aware of the wealth contained in their data, and are questioning the value of implementing techniques. Companies have access to ever more data. The sheer quantity of information available can make it very difficult to apprehend huge volumes of structured and unstructured data in order to implement company-wide improvement projects.This book focuses on 2 Datamining techniques (supervised and unsupervised) such as: decision trees, regression, neural networks and support vector machines (SVM)...we focus on the environment of use of each technique, the advantages,disadvantages and consequences of choosing one of these technical elements to extract hidden predictive information from large databases and how to implement each technique.Finally, the paper presented some valuable recommendations in the Dataminig field.

Autorentext

Professor Khalid BALARProfessor de ensino superior qualificadoEspecialidade: Business Intelligence e Modelagem EstatísticaCoordenador da Licença Profissional em E-Business e Gestão Digital.Faculdade de Ciências Jurídicas, Económicas e SociaisUniversidade Hassan II - Casablanca

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786206675686
    • Genre Business Encyclopedias
    • Sprache Englisch
    • Anzahl Seiten 52
    • Herausgeber Our Knowledge Publishing
    • Größe H220mm x B150mm x T4mm
    • Jahr 2023
    • EAN 9786206675686
    • Format Kartonierter Einband
    • ISBN 6206675688
    • Veröffentlichung 15.11.2023
    • Titel Data Mining: Comparative study of predictive techniques
    • Autor Khalid Balar
    • Untertitel in the economic sector
    • Gewicht 96g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470