Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Mining Concept Animation Library
Details
Data mining is the automated extraction of hidden predictive information from large data sets. To study new algorithms or compare different algorithms, we need a better perspective on a collection of data mining algorithms rather than just their formal definitions. In this research work, I start to create a collection of graphical and interactive implementation of data mining algorithms, called Data Mining Concept Animation Library. Potential users for this library can be future students and instructor of a data mining class. The various types of data mining algorithms that I intend to include in the library are: classification algorithms, regression algorithms, clustering/segmentation algorithms, association algorithms, and sequence analysis algorithms. In this book, I present my work on graphical and interactive implementation of two association algorithms: Apriori algorithm and Frequent Pattern (FP) Growth algorithm. My experience has proved that building the library is not only feasible but worthwhile for teaching and learning key concepts in science and engineering.
Autorentext
Nisarg Shah received his BS in Information Technology from Gujarat University, India and MS in Computer Science from California State University-Sacramento, USA. His areas of interest include Data Mining, Computer Networking and eCommerce. He is currently working as an Embedded Software Engineer with one of the top global IT Company.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 125g
- Untertitel A Graphical and Interactive User Interface for Understanding Data Mining Algorithms
- Autor Nisarg Shah
- Titel Data Mining Concept Animation Library
- Veröffentlichung 08.05.2011
- ISBN 3844312919
- Format Kartonierter Einband
- EAN 9783844312911
- Jahr 2011
- Größe H220mm x B150mm x T5mm
- Anzahl Seiten 72
- GTIN 09783844312911