Deep Learning Architectures

CHF 125.00
Auf Lager
SKU
M9P39HSANT5
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

Contains a fair number of end-of chapter exercises Full solutions provided to all exercises Appendices including topics needed in the book exposition

Autorentext
Ovidiu Calin, a graduate from University of Toronto, is a professor at Eastern Michigan University and a former visiting professor at Princeton University and University of Notre Dame. He has delivered numerous lectures at several universities in Japan, Hong Kong, Taiwan, and Kuwait over the last 15 years. His publications include over 60 articles and 8 books in the fields of machine learning, computational finance, stochastic processes, variational calculus and geometric analysis.

Inhalt
Introductory Problems.- Activation Functions.- Cost Functions.- Finding Minima Algorithms.- Abstract Neurons.- Neural Networks.- Approximation Theorems.- Learning with One-dimensional Inputs.- Universal Approximators.- Exact Learning.- Information Representation.- Information Capacity Assessment.- Output Manifolds.- Neuromanifolds.- Pooling.- Convolutional Networks.- Recurrent Neural Networks.- Classification.- Generative Models.- Stochastic Networks.- Hints and Solutions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030367206
    • Sprache Englisch
    • Auflage 1st ed. 2020
    • Größe H254mm x B178mm
    • Jahr 2020
    • EAN 9783030367206
    • Format Fester Einband
    • ISBN 978-3-030-36720-6
    • Veröffentlichung 14.02.2020
    • Titel Deep Learning Architectures
    • Autor Ovidiu Calin
    • Untertitel A Mathematical Approach
    • Herausgeber Springer, Berlin
    • Anzahl Seiten 760
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470