Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Deep Learning: Concepts and Architectures
Details
This book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilayer architectures giving rise to tangible and functionally meaningful pieces of knowledge, and shows how the structural developments have become essential to the successful delivery of competitive practical solutions to real-world problems. The book also demonstrates how the architectural developments, which arise in the setting of deep learning, support detailed learning and refinements to the system design. Featuring detailed descriptions of the current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.
Provides a comprehensive and up-to-date overview of deep learning by discussing a range of methodological and algorithmic issues Addresses implementations and case studies, identifying the best design practices and assessing business models and methodologies encountered in industry, health care, science, administration, and business Serves as a unique and well-structured reference resource for graduate and senior undergraduate students in areas such as computational intelligence, pattern recognition, computer vision, knowledge acquisition and representation, and knowledge-based systems
Inhalt
Preface.- Chapter 1. Deep Learning Architectures.- Chapter 2. Theoretical Characterization of Deep Neural Networks.- Chapter 3. Scaling Analysis of Specialized Tensor Processing Architectures for Deep Learning Models, etc.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030317584
- Auflage 1st edition 2020
- Editor Shyi-Ming Chen, Witold Pedrycz
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T20mm
- Jahr 2020
- EAN 9783030317584
- Format Kartonierter Einband
- ISBN 3030317587
- Veröffentlichung 13.11.2020
- Titel Deep Learning: Concepts and Architectures
- Untertitel Studies in Computational Intelligence 866
- Gewicht 540g
- Herausgeber Springer International Publishing
- Anzahl Seiten 356