Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Deep Learning for Emotion Recognition: From Theory to Practice
Details
This book investigates developments in computer vision and artificial intelligence automated emotional perception. Specifically, we use deep learning, DCNN, and VGG19 algorithms to combine body language and contextual information, including environmental, social, and cultural factors. We optimize deep neural networks by aggregating many picture datasets, including EMOTIC (ADE20K, MSCOCO), EMODB_SMALL, and FRAMESDB, to evaluate continuous emotional dimensions and discrete emotions properly. Our results show notable progress over current methods, improving contextual emotional awareness. This work opens the path for significant applications in social robotics, affective computing, and human-machine interaction, enabling complex emotional sensing in many different real-world contexts.
Autorentext
Dr. Fatiha Limami, a Ph.D. candidate at ENSIAS, Rabat, Morocco, specializing in data science, big data, and artificial intelligence. Her research interests focus on deep learning for emotion recognition, aiming to develop context-aware systems beneficial in social robotics, affective computing, and HCI applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208436063
- Genre Information Technology
- Anzahl Seiten 52
- Größe H220mm x B150mm x T4mm
- Jahr 2025
- EAN 9786208436063
- Format Kartonierter Einband (Kt)
- ISBN 978-620-8-43606-3
- Veröffentlichung 03.04.2025
- Titel Deep Learning for Emotion Recognition: From Theory to Practice
- Autor Fatiha Limami
- Untertitel Leveraging Contextual and Multimodal Approaches for Enhanced Understanding
- Gewicht 96g
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch