Deep Learning for Emotion Recognition: From Theory to Practice

CHF 51.55
Auf Lager
SKU
O1Q5Q88QTC6
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book investigates developments in computer vision and artificial intelligence automated emotional perception. Specifically, we use deep learning, DCNN, and VGG19 algorithms to combine body language and contextual information, including environmental, social, and cultural factors. We optimize deep neural networks by aggregating many picture datasets, including EMOTIC (ADE20K, MSCOCO), EMODB_SMALL, and FRAMESDB, to evaluate continuous emotional dimensions and discrete emotions properly. Our results show notable progress over current methods, improving contextual emotional awareness. This work opens the path for significant applications in social robotics, affective computing, and human-machine interaction, enabling complex emotional sensing in many different real-world contexts.

Autorentext

Dr. Fatiha Limami, a Ph.D. candidate at ENSIAS, Rabat, Morocco, specializing in data science, big data, and artificial intelligence. Her research interests focus on deep learning for emotion recognition, aiming to develop context-aware systems beneficial in social robotics, affective computing, and HCI applications.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786208436063
    • Genre Information Technology
    • Anzahl Seiten 52
    • Größe H220mm x B150mm x T4mm
    • Jahr 2025
    • EAN 9786208436063
    • Format Kartonierter Einband (Kt)
    • ISBN 978-620-8-43606-3
    • Veröffentlichung 03.04.2025
    • Titel Deep Learning for Emotion Recognition: From Theory to Practice
    • Autor Fatiha Limami
    • Untertitel Leveraging Contextual and Multimodal Approaches for Enhanced Understanding
    • Gewicht 96g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470