Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
Details
This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017.
The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.
Includes supplementary material: sn.pub/extras
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319675572
- Genre Information Technology
- Auflage 1st ed. 2017
- Editor M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo Papa, Anant Madabushi, Jacinto C. Nascimento, Jaime S. Cardoso, Vasileios Belagiannis, Zhi Lu
- Lesemotiv Verstehen
- Anzahl Seiten 385
- Größe H23mm x B162mm x T236mm
- Jahr 2017
- EAN 9783319675572
- Format Kartonierter Einband
- ISBN 978-3-319-67557-2
- Titel Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
- Untertitel Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings
- Gewicht 641g
- Herausgeber Springer
- Sprache Englisch