Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Degenerate Nonlinear Diffusion Equations
Details
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain.
From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.
Includes supplementary material: sn.pub/extras
Inhalt
1 Parameter identification in a parabolic-elliptic degenerate problem.- 2 Existence for diffusion degenerate problems.- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations.- 4 Parameter identification in a parabolic-elliptic degenerate problem.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642282843
- Sprache Englisch
- Auflage 2012
- Größe H235mm x B155mm x T10mm
- Jahr 2012
- EAN 9783642282843
- Format Kartonierter Einband
- ISBN 3642282849
- Veröffentlichung 09.05.2012
- Titel Degenerate Nonlinear Diffusion Equations
- Autor Gabriela Marinoschi , Angelo Favini
- Untertitel Lecture Notes in Mathematics 2049
- Gewicht 265g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 168
- Lesemotiv Verstehen
- Genre Mathematik