Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dependability Modelling under Uncertainty
Details
This work introduces new uncertainty-preserving dependability methods for early design stages. It is further shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions.
Mechatronic design processes have become shorter and more parallelized, induced by growing time-to-market pressure. Methods that enable quantitative analysis in early design stages are required, should dependability analyses aim to influence the design. Due to the limited amount of data in this phase, the level of uncertainty is high and explicit modeling of these uncertainties becomes necessary.
This work introduces new uncertainty-preserving dependability methods for early design stages. These include the propagation of uncertainty through dependability models, the activation of data from similar components for analyses and the integration of uncertain dependability predictions into an optimization framework. It is shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions. Expert estimates can be represented, input uncertainty is propagated through the system and prediction uncertainty can be measured and interpreted. The resulting coherent methodology can be applied to represent the uncertainty in dependability models.
Latest research in Dependability modelling under Uncertainty with applications to mechatronics
Inhalt
Dependability Prediction in Early Design Stages.- Representation and Propagation of Uncertainty Using the Dempster-Shafer Theory of Evidence.- Predicting Dependability Characteristics by Similarity Estimates A Regression Approach.- Design Space Specification of Dependability Optimization Problems Using Feature Models.- Evolutionary Multi-objective Optimization of Imprecise Probabilistic Models.- Case Study.- Summary, Conclusions and Outlook.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642088803
- Sprache Englisch
- Auflage Softcover reprint of hardcover 1st edition 2008
- Größe H235mm x B155mm x T9mm
- Jahr 2010
- EAN 9783642088803
- Format Kartonierter Einband
- ISBN 3642088805
- Veröffentlichung 18.11.2010
- Titel Dependability Modelling under Uncertainty
- Autor Philipp Limbourg
- Untertitel An Imprecise Probabilistic Approach
- Gewicht 248g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 156
- Lesemotiv Verstehen
- Genre Informatik