Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dependent Data in Social Sciences Research
Details
This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom.
Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.
Presents new developments and applications for dependent data Includs methods for the analysis of longitudinal data and corrections for degrees of freedom Covers growth curve modeling, directional dependence, dyadic data modeling, item response modelling and more
Autorentext
Mark Stemmler is Professor at Friedrich Alexander University Erlangen-Nuremberg (FAU), Department of Psychology
Wolfgang Wiedermann is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US).
Francis L. Huang is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US).
Inhalt
Growth Curve Modeling.- Directional Dependence.- Dydatic Data Modeling.- Item Response Modeling.- Other Methods for the Analyses of Dependent Data.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031563171
- Lesemotiv Verstehen
- Genre Business, Finance & Law
- Auflage Second Edition 2024
- Editor Mark Stemmler, Francis L. Huang, Wolfgang Wiedermann
- Sprache Englisch
- Anzahl Seiten 808
- Herausgeber Springer International Publishing
- Gewicht 1361g
- Größe H241mm x B160mm x T49mm
- Jahr 2024
- EAN 9783031563171
- Format Fester Einband
- ISBN 3031563174
- Veröffentlichung 22.10.2024
- Titel Dependent Data in Social Sciences Research
- Untertitel Forms, Issues, and Methods of Analysis