Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dependent Data in Social Sciences Research
Details
This volume presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These methods include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. This volume contains the following five sections: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.
Presents new developments and applications for dependent data Applications will be useful for researchers in the social sciences, econometrics, psychometrics, education and medicine Features contributions from an international array of researchers
Inhalt
Growth Curve Modeling.- Directional Dependence.- Dydatic Data Modeling.- Item Response Modeling.- Other Methods for the Analyses of Dependent Data.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319372273
- Lesemotiv Verstehen
- Genre Business, Finance & Law
- Auflage Softcover reprint of the original 1st edition 2015
- Editor Mark Stemmler, Wolfgang Wiedermann, Alexander Von Eye
- Sprache Englisch
- Anzahl Seiten 400
- Herausgeber Springer International Publishing
- Gewicht 604g
- Größe H235mm x B155mm x T22mm
- Jahr 2016
- EAN 9783319372273
- Format Kartonierter Einband
- ISBN 3319372270
- Veröffentlichung 23.08.2016
- Titel Dependent Data in Social Sciences Research
- Untertitel Forms, Issues, and Methods of Analysis