Descriptive Modelling and Pattern Discovery in Spatial Data Mining

CHF 61.80
Auf Lager
SKU
1F9GSH2UBL1
Stock 1 Verfügbar
Geliefert zwischen Mo., 22.09.2025 und Di., 23.09.2025

Details

The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced.

Autorentext

Dr. Sharma received his Ph. D. degree from Pt. Ravishankar Shukla University, Raipur-India. Dr. Sharma is a DAAD Fellow and Former member of Knowledge Discovery Department, Fraunhofer IAIS St. Augustin Germany. He is working as Head Department of Computer Science and Engineering at Rungta College of Engineering and Technology, Bhilai (CG) India.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel Regionalisation and Association Rule Mining
    • Autor Lokesh Kumar Sharma
    • Titel Descriptive Modelling and Pattern Discovery in Spatial Data Mining
    • Veröffentlichung 21.11.2011
    • ISBN 3846592153
    • Format Kartonierter Einband
    • EAN 9783846592151
    • Jahr 2011
    • Größe H220mm x B150mm x T8mm
    • Gewicht 191g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 116
    • Auflage Aufl.
    • GTIN 09783846592151

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.