Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Design of Interpretable Fuzzy Systems
Details
This book shows that the term interpretability goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Presents insights into the design of interpretable fuzzy systems Is intended primarily for researchers in fuzzy systems and computational intelligence Written by a leading expert in the field Includes supplementary material: sn.pub/extras
Inhalt
Preface.- Acknowledgements.- Chapter1: Introduction.- Chapter2: Selected topics in fuzzy systems designing.- Chapter3: Introduction to fuzzy system interpretability.- Chapter4: Improving fuzzy systems interpretability by appropriate selection of their structure.- Chapter5: Interpretability of fuzzy systems designed in the process of gradient learning.- Chapter6: Interpretability of fuzzy systems designed in the process of evolutionary learning.- Chapter7: Case study: interpretability of fuzzy systems applied to nonlinear modelling and control.- Chapter8: Case study: interpretability of fuzzy systems applied to identity verication.- Chapter9: Concluding remarks and future perspectives.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319850061
- Auflage Softcover reprint of the original 1st edition 2017
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T12mm
- Jahr 2018
- EAN 9783319850061
- Format Kartonierter Einband
- ISBN 3319850067
- Veröffentlichung 04.05.2018
- Titel Design of Interpretable Fuzzy Systems
- Autor Krzysztof Cpa ka
- Untertitel Studies in Computational Intelligence 684
- Gewicht 324g
- Herausgeber Springer International Publishing
- Anzahl Seiten 208