Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Die Praktische Behandlung von Integral-Gleichungen
Details
Die praktische Behandlung der Integralgleichungen bildet einen ver hältnismäßig jungen, noch im Wachstum begriffenen Zweig der prak tischen Mathematik. Immerhin hat die Entwicklung praktischer Me thoden für die linearen Integralgleichungen 2. Art (auch Fredholmsche Integralgleichungen genannt) heute einen Stand erreicht, der es recht fertigt, die bisher bekannt gewordenen Verfahren zu ordnen und ihre Grundlagen und Zusammenhänge nach Möglichkeit darzulegen. Dies ist der Gegenstand dieses Berichts. Es zeigt sich, daß die weitaus größte Zahl der praktischen Verfahren zu zwei großen Kategorien gehört, nämlich zu den Iterationsverfahren und zu solchen, die sich auf einen Ersatz des Kerns der Integralgleichung zurückführen lassen. Da Iterfl,tion und Kernersatz nicht auf Fredholm sehe Gleichungen beschränkt sind, so ist zu hoffen, daß die Begründung beider Methoden für Fredholmsche Gleichungen auch von Nutzen für die praktische Behandlung anderer Integralgleichungstypen sein wird, insbesondere für die linearen Integralgleichungen 1. Art, die in diesem Bericht nicht behandelt werden. Obwohl es in vielen Fällen keine Schwierigkeit bereitet, die in diesem Bericht behandelten Methoden auf Integralgleichungen 1. Art anzuwenden, so ist doch die Entwick lung von Verfahren für diesen Typ noch zu sehr im Flusse, um ihre Zusammenstellung und Ordnung nicht als verfrüht erscheinen zu lassen. Immerhin sei in diesem Zusammenhang auf einige wichtige Literatur hingewiesen, nämlich auf die Bücher und Arbeiten [20], [30], [36], [44], [61], [63], [71], [78], [80] und [83]. Hier wie auch im ganzen Bericht beziehen sich Zahlen in eckigen Klammern auf das am Ende befindliche Literaturverzeichnis. Die Einschließungssätze des H.
Klappentext
Die praktische Behandlung der Integralgleichungen bildet einen ver hältnismäßig jungen, noch im Wachstum begriffenen Zweig der prak tischen Mathematik. Immerhin hat die Entwicklung praktischer Me thoden für die linearen Integralgleichungen 2. Art (auch Fredholmsche Integralgleichungen genannt) heute einen Stand erreicht, der es recht fertigt, die bisher bekannt gewordenen Verfahren zu ordnen und ihre Grundlagen und Zusammenhänge nach Möglichkeit darzulegen. Dies ist der Gegenstand dieses Berichts. Es zeigt sich, daß die weitaus größte Zahl der praktischen Verfahren zu zwei großen Kategorien gehört, nämlich zu den Iterationsverfahren und zu solchen, die sich auf einen Ersatz des Kerns der Integralgleichung zurückführen lassen. Da Iterfl,tion und Kernersatz nicht auf Fredholm sehe Gleichungen beschränkt sind, so ist zu hoffen, daß die Begründung beider Methoden für Fredholmsche Gleichungen auch von Nutzen für die praktische Behandlung anderer Integralgleichungstypen sein wird, insbesondere für die linearen Integralgleichungen 1. Art, die in diesem Bericht nicht behandelt werden. Obwohl es in vielen Fällen keine Schwierigkeit bereitet, die in diesem Bericht behandelten Methoden auf Integralgleichungen 1. Art anzuwenden, so ist doch die Entwick lung von Verfahren für diesen Typ noch zu sehr im Flusse, um ihre Zusammenstellung und Ordnung nicht als verfrüht erscheinen zu lassen. Immerhin sei in diesem Zusammenhang auf einige wichtige Literatur hingewiesen, nämlich auf die Bücher und Arbeiten [20], [30], [36], [44], [61], [63], [71], [78], [80] und [83]. Hier wie auch im ganzen Bericht beziehen sich Zahlen in eckigen Klammern auf das am Ende befindliche Literaturverzeichnis. Die Einschließungssätze des H.
Inhalt
I. Abschnitt. Formeln und Sätze aus der Theorie der Fredholmschen Integralgleichungen.- § 1. Fredholmsche Integralgleichungen, Systeme und gemischte Gleichungen, Integraloperatoren.- § 2. Der reziproke Kern und die Fredholmschen Formeln.- § 3. Orthogonale und biorthogonale Systeme von Funktionen; die Nullstellen der Fredholmschen Determinante.- § 4. Spezielle Integraloperatoren.- § 5. Zusammengesetzte Operatoren.- II. Abschnitt. Die Berechnung von Eigenwerten mit Hilfe von Formeln und Variationsprinzipien. Einschließungssätze.- § 6. Berechnung der Eigenwerte aus der Fredholmschen Determinante.- § 7. Die Potenzsummen der reziproken Eigenwerte.- § 8. Extremaleigenschaften der Eigenwerte eines Hermiteschen Kerns. 1. Einschließungssatz.- § 9. Extremaleigenschaften rational transformierter Eigenwerte Hermitescher Integraloperatoren und allgemeine Einschließungssätze.- § 10. Dreigliedrige Einschließungspolynome. Verträgliche Spektra.- III. Abschnitt. Iterationsverfahren.- § 11. Asymptotisches Gesetz der klassischen Iteration.- § 12. Der Begriff der Beteiligung.- § 13. Anwendung des klassischen Iterationsverfahrens auf die inhomogene Integralgleichung.- § 14. Die Berechnung des 1. Eigenwertes eines beliebigen Kerns für den Fall |?1| t.- § 42. Die Volterrasche Integralgleichung vom Faltungstyp.- § 43. Kerne, die sich physikalisch-technisch realisieren lassen.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662013953
- Sprache Deutsch
- Genre Weitere Mathematik-Bücher
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T8mm
- Jahr 2012
- EAN 9783662013953
- Format Kartonierter Einband
- ISBN 978-3-662-01395-3
- Veröffentlichung 05.09.2012
- Titel Die Praktische Behandlung von Integral-Gleichungen
- Autor Hans Bückner
- Untertitel Ergebnisse der angewandten Mathematik 1
- Gewicht 219g
- Herausgeber Springer
- Anzahl Seiten 128