Differentiable and Complex Dynamics of Several Variables

CHF 120.75
Auf Lager
SKU
27DGTJK3E1E
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.

Inhalt
1 Fatou-Julia type theory.- 2 Ergodic theorems and invariant sets.- 3 Hyperbolicity in differentiable dynamics.- 4 Some topics in dynamics.- 5 Hyperbolicity in complex dynamics.- 6 Iteration theory on ?m.- 7 Complex dynamics in ?m.- A Foundations of differentiable dynamics.- B Foundations of complex dynamics.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048152469
    • Sprache Englisch
    • Größe H235mm x B155mm x T20mm
    • Jahr 2010
    • EAN 9789048152469
    • Format Kartonierter Einband
    • ISBN 9048152461
    • Veröffentlichung 05.12.2010
    • Titel Differentiable and Complex Dynamics of Several Variables
    • Autor Pei-Chu Hu , Chung-Chun Yang
    • Untertitel Mathematics and Its Applications 483
    • Gewicht 534g
    • Herausgeber Springer
    • Anzahl Seiten 352
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470