Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Diffusion systems and heat equations on networks
Details
In these notes, a theory for sesquilinear forms on product spaces is developed, with the aim of unifying the treatment of diffusion systems and equation on networks. In the first part, a theoretical framework for sesquilinear forms defined on the direct sum of Hilbert spaces is developed. Conditions for the boundedness, ellipticity and coercivity of the sesquilinear form are proved. A criterion of E.-M. Ouhabaz is used in order to prove qualitative properties of the abstract Cauchy problem having as generator the operator associated with the sesquilinear form. In the second part we analyze quantum graphs as a special case of forms on subspaces of the direct sum of Hilbert spaces. First, we set up a framework for handling quantum graphs in the case of infinite networks. Then, the operator associated with such systems is identified and investigated. Finally, we turn our attention to symmetry properties of the associated parabolic problem and we investigate the connection with the physical concept of a gauge symmetry.
Autorentext
Studied Mechanical Engineering and Mathematics at theUniversities of Bari (Italy) and Tübingen (Germany) from 1998 to2005. He obtained a diploma in Mathematics in September 2005.He completed his PhD studies at the University of Ulm(2005-2008). He obtained his PhD degree in June 2008.Since May 2008 he is a PostDoc at the BCCN Freiburg.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838113166
- Sprache Englisch
- Größe H220mm x B150mm x T8mm
- Jahr 2015
- EAN 9783838113166
- Format Kartonierter Einband
- ISBN 3838113160
- Veröffentlichung 18.10.2015
- Titel Diffusion systems and heat equations on networks
- Autor Stefano Cardanobile
- Untertitel Symmetries and irreducibility
- Gewicht 191g
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
- Anzahl Seiten 116
- Genre Mathematik