Digital Forensics and Cyber Crime

CHF 112.05
Auf Lager
SKU
QI354SKEM07
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

The two-volume set LNICST 570 and 571 constitutes the refereed post-conference proceedings of the 14th EAI International Conference on Digital Forensics and Cyber Crime, ICDF2C 2023, held in New York City, NY, USA, during November 30, 2023.

The 41 revised full papers presented in these proceedings were carefully reviewed and selected from 105 submissions. The papers are organized in the following topical sections:
Volume I:
Crime profile analysis and Fact checking, Information hiding and Machine learning.

Volume II:
Password, Authentication and Cryptography, Vulnerabilities and Cybersecurity and forensics.


Klappentext

Crime profile analysis and Fact checking.- A Canary in the Voting Booth: Attacks on a Virtual Voting Machine.- Catch Me if You Can: Analysis of Digital Devices Artifacts Used in Murder Cases.- Enhancing Incident Management by an improved Understanding of Data Exfiltration: Definition, Evaluation, Review.- Identify Users on Dating Applications: A Forensic Perspective.- Removing Noise (Opinion Messages) For Fake News De-tection In Discussion Forum Using BERT Model.- Retruth Reconnaissance: A Digital Forensic Analysis of Truth Social.- Information hiding.- A Multi-Carrier Information Hiding Algorithm Based on Dual 3D Model Spectrum Analysis.- A Multi-Carrier Information Hiding Algorithm Based on Layered Compression of 3D Point Cloud Model.- Point cloud model information hiding algorithm based on multi-scale transformation and composite operator.- An Information Hiding Algorithm Baed on Multi-Carrier Fusion State Partitioning of 3D Models.- Machine learning.- CCBA: Code Poisoning-based Clean-Label Covert Backdoor Attack against DNNs.- Decoding HDF5: Machine Learning File Forensics and Data Injection.- DEML: Data-enhanced Meta-Learning Method for IoT APT Traffic Detection.- Finding Forensic Artefacts in Long-term Frequency Band Occupancy Measurements using Statistics and Machine Learning.- IoT Malicious Traffic Detection based on Federated Learning.- Persistent Clean-label Backdoor on Graph-based Semi-supervised Cybercrime Detection.- Backdoor Learning on Siamese Networks using Physical Triggers: FaceNet as a Case Study.- Research on Feature Selection Algorithm of Energy Curve.- Power Analysis Attack Based on GA-based Ensemble Learning.


Inhalt
Crime profile analysis and Fact checking .- A Canary in the Voting Booth: Attacks on a Virtual Voting Machine.- Catch Me if You Can: Analysis of Digital Devices Artifacts Used in Murder Cases.- Enhancing Incident Management by an improved Understanding of Data Exfiltration: Definition, Evaluation, Review.- Identify Users on Dating Applications: A Forensic Perspective.- Removing Noise (Opinion Messages) For Fake News De-tection In Discussion Forum Using BERT Model.- Retruth Reconnaissance: A Digital Forensic Analysis of Truth Social.- Information hiding .- A Multi-Carrier Information Hiding Algorithm Based on Dual 3D Model Spectrum Analysis.- A Multi-Carrier Information Hiding Algorithm Based on Layered Compression of 3D Point Cloud Model.- Point cloud model information hiding algorithm based on multi-scale transformation and composite operator.- An Information Hiding Algorithm Baed on Multi-Carrier Fusion State Partitioning of 3D Models.- Machine learning .- CCBA: Code Poisoning-based Clean-Label Covert Backdoor Attack against DNNs.- Decoding HDF5: Machine Learning File Forensics and Data Injection.- DEML: Data-enhanced Meta-Learning Method for IoT APT Traffic Detection.- Finding Forensic Artefacts in Long-term Frequency Band Occupancy Measurements using Statistics and Machine Learning.- IoT Malicious Traffic Detection based on Federated Learning.- Persistent Clean-label Backdoor on Graph-based Semi-supervised Cybercrime Detection.- Backdoor Learning on Siamese Networks using Physical Triggers: FaceNet as a Case Study.- Research on Feature Selection Algorithm of Energy Curve.- Power Analysis Attack Based on GA-based Ensemble Learning.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031565793
    • Genre Information Technology
    • Editor Sanjay Goel, Paulo Roberto Nunes de Souza
    • Lesemotiv Verstehen
    • Anzahl Seiten 325
    • Größe H18mm x B155mm x T235mm
    • Jahr 2024
    • EAN 9783031565793
    • Format Kartonierter Einband
    • ISBN 978-3-031-56579-3
    • Titel Digital Forensics and Cyber Crime
    • Untertitel 14th EAI International Conference, ICDF2C 2023, New York City, NY, USA, November 30, 2023, Proceedings, Part I
    • Gewicht 523g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470