Dimensionality Reduction with Unsupervised Nearest Neighbors

CHF 165.55
Auf Lager
SKU
TGCKB6BB6P5
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.

Presents recent research in the Hybridization of Metaheuristics for Optimization Problems State-of-the-Art book Written from a leading expert in this field

Inhalt
Part I Foundations.- Part II Unsupervised Nearest Neighbors.- Part III Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642386510
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T13mm
    • Jahr 2013
    • EAN 9783642386510
    • Format Fester Einband
    • ISBN 3642386512
    • Veröffentlichung 11.06.2013
    • Titel Dimensionality Reduction with Unsupervised Nearest Neighbors
    • Autor Oliver Kramer
    • Untertitel Intelligent Systems Reference Library 51
    • Gewicht 395g
    • Herausgeber Springer
    • Anzahl Seiten 148

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470