Discrete Weak KAM Theory

CHF 99.45
Auf Lager
SKU
M35VO4GAOTN
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

The aim of this book is to present a self-contained account of discrete weak KAM theory. Putting aside its intrinsic elegance, this theory also provides a toy model for classical weak KAM theory, where many technical difficulties disappear, but where the central ideas and results persist. It therefore serves as a good introduction to (continuous) weak KAM theory. The first three chapters give a general exposition of the general abstract theory, concluding with a discussion of the relations between the results proved in the discrete setting and the analogous theorems of classical weak KAM theory. Several examples are studied and some key differences between the discrete and classical theory are highlighted. The final chapter is devoted to the historical problem of conservative twist maps of the annulus.

Provides a comprehensive and self-contained introduction to discrete weak KAM theory Offers an elementary approach to classical weak KAM and AubryMather theory for TonelliHamiltonian systems Contains new material on links between the discrete and the classical versions of weak KAM theory and explicit examples

Autorentext

Maxime Zavidovique studied mathematics at Ecole Normale Supérieure in Lyon, France. He completed his PhD in 2011, under the supervision of Albert Fathi. Since 2011 he has held an Assistant Professor position at Sorbonne Université (formerly Jussieu) in the IMJ-PRG laboratory. His research focuses on various versions of weak KAM theory (including the discrete and the classical ones), and convergence problems of solutions to approximations of the Hamilton–Jacobi equation.


Inhalt

Chapter 1. Introduction. - Chapter 2. The discrete weak KAM setting.- Chapter 3. Characterizations of the Aubry sets.- Chapter 4. Mather measures, discounted semigroups.- Chapter 5. A family of examples.- Chapter 6. Twist maps.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031968082
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 188
    • Herausgeber Springer
    • Größe H235mm x B155mm
    • Jahr 2025
    • EAN 9783031968082
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-031-96808-2
    • Veröffentlichung 27.09.2025
    • Titel Discrete Weak KAM Theory
    • Autor Maxime Zavidovique
    • Untertitel An Introduction through Examples and its Applications to Twist Maps
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470