Distributed Crop Parameter Assimilation Models

CHF 84.55
Auf Lager
SKU
VP5HKGOEH2P
Stock 1 Verfügbar
Geliefert zwischen Mi., 12.11.2025 und Do., 13.11.2025

Details

Monitoring agricultural activities has benefited so much over last 20 years from the advances in Remote Sensing (RS). A crop growth model holds a vital role in agricultural monitoring system. To run crop models are quite useful especially for prediction, however, the parameter determination in large area is in practical a difficult task. A method was proposed by Ines, (2002) to optimize the input parameters of a one-dimensional crop model (SWAP) by assimilating simulated evapotranspiration with remote sensing data. The optimization is based on GA (Genetic Algorithm). However, it requires huge computational time, which is one of the constraints in practical implementation of the method. Cluster is a type of parallel and distributed processing system, provides us with increased computing capabilities and which can help to remove the computational time constraints. Thus, a parallel crop model (SWAP-GA) procedures for remote sensed images is considered. In this study, a numerical experiment with three different SWAP-GA cluster implementation schemes is presented to show the strengths and limitations of these proposed approaches using Optima, Magi and Maeka clusters.

Autorentext

Ph D research fellow, Brain Protein Malfunction Lab., Department of Medicine, University of Santiago De Compostela, Spain.&Faculty member of Biotechnology & Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659270253
    • Sprache Englisch
    • Größe H220mm x B220mm x T150mm
    • Jahr 2012
    • EAN 9783659270253
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-27025-3
    • Titel Distributed Crop Parameter Assimilation Models
    • Autor Md. Shamim Akhter , Kiyoshi Honda
    • Untertitel Part I
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 168
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470