Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dynamic Characterization of Vocal Fold Vibrations
Details
This book introduces a new seven-mass biomechanical model for the mechanical vibration of vocal folds. The model is based on the body-cover layer concept of the vocal fold biomechanics, and segments the cover layer into three masses along the longitudinal direction of the vocal fold. The model is used to characterize the vocal fold dynamics of 14 human subjects with healthy and pathological vocal folds (nodule, polyp and unilateral paralysis). A semi-empirical procedure for tuning the model parameters is proposed so that the model response matches as closely as possible the experimental data obtained from high-speed videoendoscopy in the time and frequency domains. Two factors, quantifying the asymmetry between left and right vocal folds and anterior and posterior segments of the vocal folds, are introduced. Based on the value of the asymmetry factors for the 14 subjects, the 2D asymmetry space is subdivided into four regions corresponding to healthy vocal folds, nodule, polyp and unilateral paralysis. This yields a clear visual aid for clinicians, correlating the model parameters to voice quality.
Autorentext
Zhenyi Wei is a Ph.D. candidate in mechanical engineering at Louisiana State University. His research interests include modeling, adaptive control and embedded system.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659182235
- Auflage Aufl.
- Sprache Englisch
- Genre Allgemeines & Lexika
- Größe H220mm x B150mm x T7mm
- Jahr 2016
- EAN 9783659182235
- Format Kartonierter Einband
- ISBN 3659182230
- Veröffentlichung 07.04.2016
- Titel Dynamic Characterization of Vocal Fold Vibrations
- Autor Zhenyi Wei
- Untertitel Biomechanical modeling and high-speed imaging
- Gewicht 161g
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 96