Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Dynamic Flexible Constraint Satisfaction and its Application to AI Planning
Details
A detailed systematic review of the constraint satisfaction literature.
Methods are developed which, for the first time, are able to solve problems which both contain a dynamic component and are open to compromise if a 'perfect' solution does not exist Classical artificial intelligence planning is extended to incorporate preferences so that it too can support compromise A trade-off between the length of a plan versus the number and severity of the compromises it contains is now possible An extensive empirical analysis of the new dynamic-flexible problem solving methods and the development of a new flexible planning Includes supplementary material: sn.pub/extras
Zusammenfassung
A detailed systematic review of the constraint satisfaction literature.
Inhalt
1 Introduction.- 1.1 Solving Classical CSPs.- 1.2 Applications of Classical CSP.- 1.3 Limitations of Classical CSP.- 1.4 Dynamic Flexible CSP.- 1.5 Flexible Planning: a DFCSP Application.- 1.6 Structure.- 1.7 Contributions and their Significance.- 2 The Constraint Satisfaction Problem.- 2.1 Constraints and Constraint Graphs.- 2.2 Tree Search Solution Techniques for Classical CSP.- 2.3 Pre-Processing Techniques.- 2.4 Hybrid Tree-search Consistency-enforcing Algorithms.- 2.5 Heuristics.- 2.6 Conflict Recording.- 2.7 The Phase Transition in CSPs.- 2.8 Graph-Based Methods.- 2.9 Extending the CSP Framework.- 2.10 Dynamic Constraint Satisfaction.- 2.11 Summary.- 3 Dynamic Flexible Constraint Satisfaction.- 3.1 Towards Dynamic Flexible Constraint Satisfaction.- 3.2 Examples from the Dynamic Perspective.- 3.3 A Specific Instance of DFCSP.- 3.4 Fuzzy rrDFCSP Solution via Branch and Bound.- 3.5 Fuzzy rrDFCSP Solution via Local Repair.- 3.6 Fuzzy Arc Consistency.- 3.7 Solution Techniques for other DFCSP Instances.- 3.8 An Example.- 3.9 Summary.- 4 An Empirical Study of Fuzzy rrDFCSPs.- 4.1 The Problems.- 4.2 The Algorithms Studied.- 4.3 Evaluation Criteria.- 4.4 Heuristics Investigated.- 4.5 Results: 3-point Satisfaction Scale.- 4.6 Results: 4-point Satisfaction Scale.- 4.7 Results: 5-point Satisfaction Scale.- 4.8 The Utility of Dynamic Information.- 4.9 The Utility of the Deletion Threshold.- 4.10 The Utility of the Constraint Check Ordering Heuristic.- 4.11 The Utility of FLC Variable Selection Heuristics.- 4.12 The Utility of FLC Domain Element Selection Heuristics.- 4.13 Summary.- 5 Dynamic CSP in Domain-independent AI Planning.- 5.1 AI Planning.- 5.2 An Overview of Graphplan.- 5.3 Viewing the Planning Graph as a CSP.- 5.4 Plan Extraction via Dynamic Constraint Satisfaction.-5.5 The GP-rrDCSP Algorithm.- 5.6 Complexity Issues.- 5.7 Avoiding Irrelevant Variables in Memosets Created by Propagation.- 5.8 Focusing the Search.- 5.9 Summary.- 6 GP-rrDCSP: Experimental Results.- 6.1 The Logistics Domain.- 6.2 The Blocks-world Domain.- 6.3 The Gripper Domain.- 6.4 The Movie Domain.- 6.5 The Grid Domain.- 6.6 Summary.- 7 Flexible Planning Problems & Flexible Graphplan.- 7.1 Background.- 7.2 Flexible Planning Problems.- 7.3 Flexible Graph Expansion.- 7.4 Flexible Plan Extraction via rrDFCSP.- 7.5 The FGP Algorithm.- 7.6 Summary.- 8 FGP: Experimental Results.- 8.1 The Test Suite.- 8.2 The Test Suite: Plan Synthesis Results.- 8.3 The Rescue Problem.- 8.4 Summary.- 9 Conclusion.- 9.1 A Summary.- 9.2 Future Work.- 9.3 And Finally.- References.- A Pseudo-code.- A.1 Backtrack.- A.2 Backjump.- A.3 Conflict-directed Backjump.- A.4 Backmark.- A.5 Revise().- A.6 AC-1().- A.7 AC-3().- A.8 AC-1/4().- A.9 Branch and Bound.- B Proofs.- B.1 Soundness and Completeness of FLC.- B.3 Soundness and Completeness of Flexible Graphplan.- D Planning Problems.- D.1 The Test Suite.- D.1.1 Domain Operators.- D.1.2 Problem 1.- D.1.3 Problem 2.- D.1.4 Problem 3.- D.1.5 Problem 4.- D.1.6 Problem 5.- D.1.7 Problem 6.- D.1.8 Problem 7.- D.1.9 Problem 8.- D.1.10 Problem 9.- D.1.11 Problem 10.- D.1.12 Problem 11.- D.1.13 Problem 12.- D.2 The Rescue Problem.- D.2.1 Domain Operators.- D.2.2 Problem Specification.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781447110484
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2004
- Größe H235mm x B155mm x T19mm
- Jahr 2012
- EAN 9781447110484
- Format Kartonierter Einband
- ISBN 144711048X
- Veröffentlichung 27.09.2012
- Titel Dynamic Flexible Constraint Satisfaction and its Application to AI Planning
- Autor Ian Miguel
- Untertitel Distinguished Dissertations
- Gewicht 522g
- Herausgeber Springer London
- Anzahl Seiten 344
- Lesemotiv Verstehen
- Genre Informatik