Dynamic Fuzzy Machine Learning

CHF 233.15
Auf Lager
SKU
6RQMC54PF6K
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic.

This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.


Autorentext

Fanzhang Li, Zhang Li, Zhang Zhao, Soochow University, Suzhou, China


Zusammenfassung
Table of Content:
Chapter 1 Dynamic fuzzy machine learning
1.1 Raise of dynamic fuzzy machine learning
1.2 Dynamic fuzzy machine learning and model
1.3 Algorithms for dynamic fuzzy machine learning systems
1.4 Process control of dynamic fuzzy machine learning
1.5 Algorithms for dynamic fuzzy relations
1.6 Summary
Chapter 2 Dynamic fuzzy autonomous learning algorithms
2.1 Development of autonomous learning
2.2 Theoretical framework based on DFL (Dynamic fuzzy learning) for autonomous learning sub-space
2.3 Algorithms based on DFL for autonomous learning sub-space
2.4 Summary
Chapter 3 Dynamic fuzzy decision tree learning
3.1 Development of decision tree learning
3.2 Dynamic fuzzy decision tree learning
3.3 Technical difficulties in dynamic fuzzy decision tree
3.4 Pruning strategy in dynamic fuzzy decision tree
Chapter 4 Agent learning based on DFL
4.1 Introduction
4.2 Mental model based on DFL
4.3 Single agent machine learning based on DFL
4.4 Multi agent machine learning based on DFL
4.5 Summary
Chapter 5 Agent ubiquitous machine learning
5.1 Introduction
5.2 Agent ubiquitous machine learning
5.3 Classifier design for agent ubiquitous machine learning
5.4 Summary
Chapter 6 Bayesian quantum stochastic learning
6.1 Raise of Bayesian quantum stochastic learning
6.2 Theoretical framework
6.3 Bayesian quantum stochastic learning model
6.4 Bayesian quantum stochastic learning algorithm and design for network structure
6.5 Bayesian quantum stochastic learning algorithm and design for network parameter
6.6 Bayesian quantum stochastic learning algorithm and design for missing data
6.7 Summary
References
Appendix

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783110518702
    • Genre Information Technology
    • Auflage 1. Auflage
    • Lesemotiv Verstehen
    • Anzahl Seiten 338
    • Größe H246mm x B175mm x T24mm
    • Jahr 2017
    • EAN 9783110518702
    • Format Fester Einband
    • ISBN 3110518708
    • Veröffentlichung 04.12.2017
    • Titel Dynamic Fuzzy Machine Learning
    • Autor Fanzhang Li , Zhao Zhang , Li Zhang
    • Gewicht 753g
    • Herausgeber De Gruyter
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470