Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
e (Mathematical Constant)
CHF 67.95
Auf Lager
SKU
JF7OUJ2UU2L
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026
Details
The mathematical constant e is the unique real number such that the value of the derivative (slope of the tangent line) of the function f(x) = ex at the point x = 0 is exactly 1.[1] The function ex so defined is called the exponential function, and its inverse is the natural logarithm, or logarithm to base e. The number e is also commonly defined as the base of the natural logarithm (using an integral to define the latter), as the limit of a certain sequence, or as the sum of a certain series (see the alternative characterizations, below). e is one of the most important numbers in mathematics,[2] alongside the additive and multiplicative identities 0 and 1, the constant , and the imaginary unit i. (These are the five constants appearing in one formulation of Euler's identity.) The number e is sometimes called Euler's number after the Swiss mathematician Leonhard Euler. (e is not to be confused with the Euler Mascheroni constant, sometimes called simply Euler's constant.) The number e is irrational; it is not a ratio of integers. Furthermore, it is transcendental; it is not a root of any non-zero polynomial with rational coefficients.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130222109
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T12mm
- Jahr 2009
- EAN 9786130222109
- Format Fachbuch
- ISBN 978-613-0-22210-9
- Titel e (Mathematical Constant)
- Untertitel Representations of e, Mathematical constant, Real number, Derivative, Tangent, Exponential function, Inverse function, Natural logarithm, Integral, Limit of a sequence, Sequence, Series (mathematics)
- Gewicht 310g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 196
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung