Economic Modeling Using Artificial Intelligence Methods

CHF 143.95
Auf Lager
SKU
R8CB5973996
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

This book examines the application of artificial intelligence methods to model economic data. It addresses causality and proposes new frameworks for dealing with this issue. It also applies evolutionary computing to model evolving economic environments.

Economic Modeling Using Artificial Intelligence Methods ** examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena.

The artificial intelligence techniques used to model economic data include:

  • multi-layer perceptron neural networks
  • radial basis functions
  • support vector machines
  • rough sets
  • genetic algorithm
  • particle swarm optimization
  • simulated annealing
  • multi-agent system
  • incremental learning
  • fuzzy networks
    Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace and vice versa is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation.

    Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics,and is a valuable source of reference for graduate students, researchers and financial practitioners.

    Presents new insights into the modeling of economic data Proposes a structure for evaluating economic strategies such as inflation targeting founded on artificial intelligence techniques Addresses causality and proposes new frameworks for dealing with this issue Applies evolutionary computing to model complex evolving economic environments in an accessible way

    Autorentext

Tshilidzi Marwala , born in Venda (Limpopo, South Africa), is the Dean of Engineering at the University of Johannesburg. He is a senior member of the IEEE and distinguished member of the ACM. He is the youngest recipient of the Order of Mapungubwe and was awarded the President Award by the National Research Foundation. His research interests include the applications of computational intelligence to engineering, computer science, finance, social science and medicine.

In addition to Economic Modeling Using Artificial Intelligence Methods, he has previously published 3 books with Springer: Condition Monitoring Using Computational Intelligence Methods (2012), Militarized Conflict Modeling Using Computational Intelligence Techniques (2011); and Finite Element Model Updating Using Computational Intelligence Techniques (2010).


Klappentext

Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena.

The artificial intelligence techniques used to model economic data include:

  • multi-layer perceptron neural networks
  • radial basis functions
  • support vector machines
  • rough sets
  • genetic algorithm
  • particle swarm optimization
  • simulated annealing
  • multi-agent system
  • incremental learning
  • fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace and vice versa is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation.

Economic Modeling Using Artificial Intelligence Methods makes an importantcontribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.


Zusammenfassung

Economic Modeling Using Artificial Intelligence Methods ** examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena.

The artificial intelligence techniques used to model economic data include:

  • multi-layer perceptron neural networks
  • radial basis functions
  • support vector machines
  • rough sets
  • genetic algorithm
  • particle swarm optimization
  • simulated annealing
  • multi-agent system
  • incremental learning
  • fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace and vice versa is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation.

Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics,and is a valuable source of reference for graduate students, researchers and financial practitioners.


Inhalt

Foreword.- Preface.- Acknowledgements.- Introduction to Economic Modeling.- Techniques for Economic Modeling: Unlocking the Character of Data.- Automatic Relevance Determination in Economic Modeling.- Neural Approaches to Economic Modeling.- Bayesian Support Vector Machines for Economic Modeling: Application to Option Pricing.- Rough Sets Approach to Econom…

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447159193
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 261
    • Größe H15mm x B155mm x T235mm
    • Jahr 2015
    • EAN 9781447159193
    • Format Kartonierter Einband
    • ISBN 978-1-4471-5919-3
    • Titel Economic Modeling Using Artificial Intelligence Methods
    • Autor Tshilidzi Marwala
    • Untertitel Advanced Information and Knowledge Processing
    • Gewicht 433g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470