Efficient Reinforcement Learning in High Dimensional Domains

CHF 57.55
Auf Lager
SKU
J0R9J25SQH8
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book presents development of efficient reinforcement learning methods in a postgraduate research. A reinforcement learning agent tries every state-action pair to find the optimal policy without prior knowledge about the domain. In large domains visiting every state-action pair is not feasible by an agent, therefore standard reinforcement learning approach is not applicable in solving many real world problems. Three new methods are proposed to make the learning efficient according to the characteristics of the problems: Task-Oriented Reinforcement Learning reduces the problem size by viewing it from the task's viewpoint that clarifies task relevant state variables. Symmetrical-Actions Reinforcement Leaning reduces the size of a learning problem by exploiting partial symmetry over action relevant state variables and representing actions values by a single function. Coordinated Multiagent Reinforcement Learning technique uses coordinator-agent hierarchy to keep the size of individual learning problems small. Depending on problem characteristics all or any of these methods can be applied to solve a problem efficiently using reinforcement learning.

Autorentext

Dr. Kamal studied in KUET, Bangladesh and Kyushu University, Japan. In his academic profession he worked in universities including KUET, Kyushu University, IIUM Malaysia and The University of Tokyo. His research interests include reinforcement learning, intelligent control systems, model predictive control and intelligent transportation systems.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783846555712
    • Sprache Englisch
    • Auflage Aufl.
    • Größe H220mm x B150mm x T6mm
    • Jahr 2011
    • EAN 9783846555712
    • Format Kartonierter Einband
    • ISBN 3846555711
    • Veröffentlichung 28.12.2011
    • Titel Efficient Reinforcement Learning in High Dimensional Domains
    • Autor Md. Abdus Samad Kamal
    • Untertitel An approach to solve complex real world and engineeing problems
    • Gewicht 161g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 96
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470