Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Einstein Hilbert action
CHF 61.55
Auf Lager
SKU
SGHOQ0GAFDF
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025
Details
The Einstein Hilbert action in general relativity is the action that yields the Einstein's field equations when varied to obtain equations of motion for the spacetime metric. The action was first proposed by David Hilbert in 1915 (Hilbert, 1915). The derivation of the Einstein equations from an action has several advantages. First of all, it allows for easy unification of general relativity with other classical fields theories (such as Maxwell theory), which are also formulated in terms of an action. In the process the derivation from an action identifies a natural candidate for the source term coupling the metric to matter fields. Moreover, the action allows for the easy identification of conserved quantities through Noether's theorem by studying symmetries of the action. In general relativity, the action is usually assumed to be a functional of the metric (and matter fields), and the connection is given by the Levi-Civita connection. The Palatini formulation of general relativity assumes the metric and connection to be independent, and varies with respect to both independently, which makes it possible to include fermionic matter fields with non-integral spin.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130215514
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H9mm x B220mm x T150mm
- Jahr 2009
- EAN 9786130215514
- Format Fachbuch
- ISBN 978-613-0-21551-4
- Titel Einstein Hilbert action
- Untertitel General relativity, Action (physics), Einstein field equations, Equations of motion, David Hilbert, Maxwell's equations, Noether's theorem
- Gewicht 251g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 156
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung