Electronic Banking Fraud Detection

CHF 41.45
Auf Lager
SKU
LGTS8NKPVTE
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.

Autorentext

Enoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a Certificate Course in Data Management and Visualization (Wesleyan University). He is a member of the Nigeria Mathematical Society.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659916878
    • Genre Maths
    • Anzahl Seiten 80
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2017
    • EAN 9783659916878
    • Format Kartonierter Einband
    • ISBN 3659916870
    • Veröffentlichung 17.10.2017
    • Titel Electronic Banking Fraud Detection
    • Autor Sayo Enoch Aluko
    • Untertitel Using Data Mining Techniques And R Software For Implementing Machine Learning Algorithms In Prevention Of Fraud
    • Gewicht 137g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470