Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Elementary Probability Theory
Details
This book provides an elementary introduction to probability theory and its applications. The fourth edition adds material related to mathematical finance.
Includes supplementary material: sn.pub/extras
Autorentext
Inhalt
1 Set.- 1.1 Sample sets.- 1.2 Operations with sets.- 1.3 Various relations.- 1.4 Indicator.- Exercises.- 2 Probability.- 2.1 Examples of probability.- 2.2 Definition and illustrations.- 2.3 Deductions from the axioms.- 2.4 Independent events.- 2.5 Arithmetical density.- Exercises.- 3 Counting.- 3.1 Fundamental rule.- 3.2 Diverse ways of sampling.- 3.3 Allocation models; binomial coefficients.- 3.4 How to solve it.- Exercises.- 4 Random Variables.- 4.1 What is a random variable?.- 4.2 How do random variables come about?.- 4.3 Distribution and expectation.- 4.4 Integer-valued random variables.- 4.5 Random variables with densities.- 4.6 General case.- Exercises.- Appendix 1: Borel Fields and General Random Variables.- 5 Conditioning and Independence.- 5.1 Examples of conditioning.- 5.2 Basic formulas.- 5.3 Sequential sampling.- 5.4 Pólya's urn scheme.- 5.5 Independence and relevance.- 5.6 Genetical models.- Exercises.- 6 Mean, Variance, and Transforms.- 6.1 Basic properties of expectation.- 6.2 The density case.- 6.3 Multiplication theorem; variance and covariance.- 6.4 Multinomial distribution.- 6.5 Generating function and the like.- Exercises.- 7 Poisson and Normal Distributions.- 7.1 Models for Poisson distribution.- 7.2 Poisson process.- 7.3 From binomial to normal.- 7.4 Normal distribution.- 7.5 Central limit theorem.- 7.6 Law of large numbers.- Exercises.- Appendix 2: Stirling's Formula and de Moivre-Laplace' Theorem.- 8 From Random Walks to Markov Chains.- 8.1 Problems of the wanderer or gambler.- 8.2 Limiting schemes.- 8.3 Transition probabilities.- 8.4 Basic structure of Markov chains.- 8.5 Further developments.- 8.6 Steady state.- 8.7 Winding up (or down?).- Exercises.- Appendix 3: Martingale.- 9 Mean-Variance Pricing Model.- 9.1 An investments primer.- 9.2 Asset return and risk.- 9.3 Portfolio allocation.- 9.4 Diversification.- 9.5 Mean-variance optimization.- 9.6 Asset return distributions.- 9.7 Stable probability distributions.- Exercises.- Appendix 4: Pareto and Stable Laws.- 10 Option Pricing Theory.- 10.1 Options basics.- 10.2 Arbitrage-free pricing: 1-period model.- 10.3 Arbitrage-free pricing: N-period model.- 10.4 Fundamental asset pricing theorems.- Exercises.- General References.- Answers to Problems.- Values of the Standard Normal Distribution Function.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441930620
- Sprache Englisch
- Auflage Fourth Edition 2003
- Größe H235mm x B155mm x T23mm
- Jahr 2010
- EAN 9781441930620
- Format Kartonierter Einband
- ISBN 1441930620
- Veröffentlichung 01.12.2010
- Titel Elementary Probability Theory
- Autor Farid Aitsahlia , Kai Lai Chung
- Untertitel With Stochastic Processes and an Introduction to Mathematical Finance
- Gewicht 633g
- Herausgeber Springer New York
- Anzahl Seiten 420
- Lesemotiv Verstehen
- Genre Mathematik