Elliptic Systems of Phase Transition Type

CHF 137.05
Auf Lager
SKU
FNCBCTI2PDH
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates.

Key features and topics of this self-contained, systematic exposition include:

• Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions.

• Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves.

• Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates.

• Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results.

This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or theapplied mathematics of materials science.


Can be used as principal or supplementary reading for advanced graduate courses on nonlinear analysis or PDEs Features a self-contained exposition of the existence of connections Presents a new existence proof of Schatzman's asymmetric double connection solution Includes a complete chapter on stable standing and traveling waves for multistable systems based on variational techniques, thus avoiding the more complicated, topological approach

Inhalt
Introduction.- Connections.- Basics for the PDE System.- The Cut-Off Lemma and a Maximum Principle.- Estimates.- Symmetry and the Vector Allen-Cahn Equation: the Point Group in Rn.- Symmetry and the Vector Allen-Cahn Equation: Crystalline and Other Complex Structures.- Hierarchical Structure - Stratification.- Vector Minimizers in R2.- Radial Solutions of u = c 2 u.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319905716
    • Sprache Englisch
    • Auflage 1st edition 2018
    • Größe H241mm x B160mm x T25mm
    • Jahr 2019
    • EAN 9783319905716
    • Format Fester Einband
    • ISBN 3319905716
    • Veröffentlichung 31.01.2019
    • Titel Elliptic Systems of Phase Transition Type
    • Autor Nicholas D. Alikakos , Panayotis Smyrnelis , Giorgio Fusco
    • Untertitel Progress in Nonlinear Differential Equations and Their Applications 91
    • Gewicht 699g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 356
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470