Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
EMD-Chaos based analysis of EEG signals for early seizure detection
Details
In this thesis, a method has been developed to analyze EEG signals for early detection of seizure using empirical mode decomposition (EMD) and chaos.Chaos in EEG is de ned by the tendency to gravitate towards speci c regions in phase space. Lyapunov exponent and Kol-mogorov complexity are the important factors regarding chaotic behavior of any dynamical system. In this thesis, the Largest Lyapunov Exponent (LLE) of the EEG signal over time is observed and decision about Epileptic Seizure is taken. It is seen that from normal to seizure state transition, the amount of chaos in EEG is drastically reduced. Thus, the behavior of chaos in EEG signal described above can be used for seizure detection.
Autorentext
Aurangozeb received his BS degree in Electrical and Electronic Engineering (EEE) from the Bangladesh University of Engineering and Technology (BUET) in 2009.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783847311751
- Genre Elektrotechnik
- Auflage Aufl.
- Sprache Englisch
- Anzahl Seiten 124
- Größe H220mm x B150mm x T9mm
- Jahr 2016
- EAN 9783847311751
- Format Kartonierter Einband
- ISBN 3847311751
- Veröffentlichung 31.08.2016
- Titel EMD-Chaos based analysis of EEG signals for early seizure detection
- Autor N. F. N. Aurangozeb , Tarek Shahriar , H. M. Shahriar Hassan
- Untertitel An analysis and practical approach
- Gewicht 203g
- Herausgeber LAP Lambert Academic Publishing