Emerging Paradigms in Machine Learning

CHF 125.15
Auf Lager
SKU
8DPKVR5B4G7
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025

Details

Covering state-of-the-art and emerging paradigms in machine learning, and featuring a number of real-world applications, this book also presents key topics and algorithms that form the core of machine learning (ML) research, including granular computing.


This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.


State of the art of emerging paradigms in machine learning including some real world applications Latest research in machine learning and biologically-based techniques for the design and implementation of intelligent systems Written by leading experts in the field

Inhalt
From the content: Emerging Paradigms in Machine Learning: An Introduction.- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization.- Optimised information abstraction in granular Min/Max clustering.- Mining Incomplete DataA Rough Set Approach.- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642435744
    • Auflage 2013
    • Editor Sheela Ramanna, Robert J. Howlett, Lakhmi C Jain
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T28mm
    • Jahr 2014
    • EAN 9783642435744
    • Format Kartonierter Einband
    • ISBN 3642435742
    • Veröffentlichung 09.08.2014
    • Titel Emerging Paradigms in Machine Learning
    • Untertitel Smart Innovation, Systems and Technologies 13
    • Gewicht 779g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 520

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.