Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Emotion Recognition on Mandarin Speech
Details
In this work, we proposed a weighted discrete k-nearest neighborhood(WD-KNN) classification algorithm and compared it with several weighting schemes on KNN-based classifiers, including traditional K-Nearest Neighborhood (KNN), weighted KNN (WKNN), KNN classification using Categorical Average Patterns (WCAP), and WD-KNN. The highest recognition rate is 81.4% with WD-KNN classifier weighted by Fibonacci sequence. Then we evaluated the performance of several classifiers, including KNN, MKNN, WKNN, LDA, QDA, GMM, HMM, SVM, BPNN, and the proposed WD-KNN, for detecting emotion from Mandarin speech. The results of experiments and McNemar's test show that the proposed WD-KNN classifier achieves best accuracy for the 5-class emotion recognition and outperforms other classification techniques. Finally, we implemented an emotion radar chart to present the intensity of each emotion component in the speech in our emotion recognition system. Such system can be further used in speech training, especially for hearing-impaired to learn how to express emotions in speech more naturally.
Autorentext
I received the B.S., M.S. and Ph.D. degree in the department of Computer Science and Engineering from Tatung University, Taipei, Taiwan, Republic of China, in 1998, 2000 and 2008, respectively. My research interests include emotional speech recognition, digital image processing and cyber security.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639373868
- Sprache Englisch
- Größe H220mm x B150mm x T9mm
- Jahr 2011
- EAN 9783639373868
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-37386-8
- Titel Emotion Recognition on Mandarin Speech
- Autor Yu-Te Chen , Jun-Heng Yeh , Tsang-Long Pao
- Untertitel A Comparative Study and Performance Evaluation
- Gewicht 231g
- Herausgeber VDM Verlag
- Anzahl Seiten 144
- Genre Informatik