Energy Efficient Resource Allocation in Cloud Computing
Details
These heuristic algorithms operate in two phases, selection of task from the task pool, followed by selection of cloud resource. A set of ten greedy heuristics for resource allocation using the greedy paradigm has been used, that operates in two stages. At each stage a particular input is selected through a selection procedure. Then a decision is made regarding the selected input, whether to include it into the partially constructed optimal solution. The selection procedure can be realized using a 2-phase heuristic. In particular, we have used 'FcfsRand', 'FcfsRr','FcfsMin','FcfsMax', 'MinMin', 'MedianMin', 'MaxMin', 'MinMax', 'MedianMax', and 'MaxMax'. The simulation results indicate in the favor of MaxMax. The novel genetic algorithm framework has been proposed for task scheduling to minimize the energy consumption in cloud computing infrastructure. The performance of the proposed GA resource allocation strategy has been compared with Random and Round Robin scheduling.
Autorentext
Er. Dilip Kumar, profesor adjunto de ingeniería civil. Departamento de G.B.Pant Engg.College, Pauri (Reino Unido). Hizo su B.Tech. de AAU, Allahabad y M.Tech (WREM) del I.I.T. Guwahati (Assam). Ha publicado cuatro trabajos de investigación. Su área de trabajo es el modelado hidrológico, la optimización y la red neuronal artificial.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659563041
- Anzahl Seiten 92
- Genre Allgemein & Lexika
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 155g
- Untertitel Heuristic Algorithmic Approaches for Energy Efficient Resource Allocation
- Größe H220mm x B150mm x T6mm
- Jahr 2014
- EAN 9783659563041
- Format Kartonierter Einband
- ISBN 3659563048
- Veröffentlichung 30.06.2014
- Titel Energy Efficient Resource Allocation in Cloud Computing
- Autor Dilip Kumar , Bibhudatta Sahoo
- Sprache Englisch