Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Engineering Data-Driven Adaptive Trust-based e-Assessment Systems
Details
This book shares original innovations, research, and lessons learned regarding teaching and technological perspectives on trust-based learning systems. Both perspectives are crucial to enhancing the e-Assessment process.
In the course of the book, diverse areas of the computer sciences (machine learning, biometric recognition, cloud computing, and learning analytics, amongst others) are addressed. In addition, current trends, privacy, ethical issues, technological solutions, and adaptive educational models are described to provide readers with a global view on the state of the art, the latest challenges, and potential solutions in e-Assessment. As such, the book offers a valuable reference guide for industry, educational institutions, researchers, developers, and practitioners seeking to promote e-Assessment processes.
Inhalt
Forensic Analysis Recognition.- Plagiarism Detection.- Biometric Tools for Learner Identity in e-Assessment.- Engineering Cloud-based Technological Infrastructure.- Security and Privacy in the TeSLA Architecture.- Design and Implementation of Dashboards to Support Teachers Decision-Making Process in e-Assessment Systems.- Design and execution of TeSLA Pilots.- Ethical, Legal and Privacy Considerations for Adaptive Systems.- Underpinning Quality Assurance in Trust-based e-Assessment Procedures.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030293253
- Auflage 1st edition 2020
- Editor David Baneres, Ana Elena Guerrero-Roldán, M. Elena Rodríguez
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T20mm
- Jahr 2019
- EAN 9783030293253
- Format Kartonierter Einband
- ISBN 3030293254
- Veröffentlichung 19.10.2019
- Titel Engineering Data-Driven Adaptive Trust-based e-Assessment Systems
- Untertitel Challenges and Infrastructure Solutions
- Gewicht 534g
- Herausgeber Springer International Publishing
- Anzahl Seiten 352