Enhanced Question Classification with Optimal Combination of Features

CHF 57.55
Auf Lager
SKU
HDO1QRPP98P
Stock 1 Verfügbar
Geliefert zwischen Do., 15.01.2026 und Fr., 16.01.2026

Details

An important component of question answering systems is question classification. The task of question classification is to predict the entity type of the answer of a natural language question. For example for the given question of "what is the capital of the Netherlands?", the task of question classification is to classify this question to the category "city" since the answer type of this question is of type "city". Question classification is typically done using machine learning techniques. Different lexical, syntactical and semantic features can be extracted from a question. In this work we introduce two new semantic features which improve the accuracy of classification. Furthermore, we developed a weighed approach to optimally combine different features. We also applied Latent Semantic Analysis (LSA) technique to reduce the large feature space of questions to a much smaller and efficient feature space. Our experimental results show that our approach is successful.

Autorentext

Babak Loni did his MSc. of Computer Science in Delft University of Technology, Netherlands, and his BSc. of Computer Science in Amirkabir University of Technology, Iran. His main expertise is Natural Language Processing. He has also successful records in Software Engineering. You can find more info about him in: www.babak-loni.com

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783847331346
    • Sprache Englisch
    • Auflage Aufl.
    • Größe H220mm x B150mm x T6mm
    • Jahr 2015
    • EAN 9783847331346
    • Format Kartonierter Einband
    • ISBN 3847331345
    • Veröffentlichung 31.07.2015
    • Titel Enhanced Question Classification with Optimal Combination of Features
    • Autor Babak Loni
    • Untertitel A new approach on automated question answering systems
    • Gewicht 149g
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 88
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470